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Abstract—In this paper, a novel hybrid cubemap projection (HCP) 

is proposed to improve the 360-degree video coding efficiency. 

HCP allows adaptive sampling adjustments in the horizontal and 

vertical directions within each cube face. HCP parameters of each 

cube face can be adjusted based on the input 360-degree video 

content characteristics for a better sampling efficiency. The HCP 

parameters can be updated periodically to adapt to temporal 

content variation. An efficient HCP parameter estimation 

algorithm is proposed to reduce the computational complexity of 

parameter estimation. Experimental results demonstrate that 

HCP format achieves on average luma (Y) BD-rate reduction of 

11.51%, 8.0%, and 0.54% compared to equirectangular projection 

format, cubemap projection format, and adjusted cubemap 

projection format, respectively, in terms of end-to-end WS-PSNR. 

I. INTRODUCTION 

360-degree video has become popular in recent years with the 
advances in virtual reality (VR) and augmented reality (AR) 
technologies and has been rapidly commercialized in a variety 
of applications, such as immersive cinema, gaming, 
education/training, healthcare, social media and 360-degree 
video streaming, etc. To provide users with an immersive 
experience, 360-degree video requires much higher bandwidth 
compared with conventional 2D video, due to the increase in 
resolution, frame rate, and quality of experience requirements. 
For example, a premium quality 360-degree stereo video with 
90 frames per second (fps) at 8K resolution can easily consume 
bandwidth up to multiple gigabits per second (Gbps). Therefore, 
efficient compression and delivery of ultra-high quality 360-
degree video becomes important for the wide adoption of 
VR/AR applications.  

Many companies are working towards developing more 
efficient 360-degree video compression and delivery systems 
and products. Some preliminary 360-degree video services are 
already provided on several major video platforms, such as 
Facebook and YouTube. The joint video exploration 
team (JVET) from MPEG and VCEG, which is exploring new 
technologies for the next generation video coding standard, is 
investigating 360-degree video coding technologies [1]. The 
joint exploration model (JEM) software maintained by JVET is 
used as the codebase for the exploration work of 360-degree 
video coding [2]. Recently, a call for proposals (CfP) [3] was 
issued on next generation video compression technologies 
beyond HEVC, where 360-degree video is included as an 
important content category. 

The typical workflow of 360-degree video compression and 
delivery is illustrated in Figure 1. Firstly, video sequences from 
multiple cameras are captured and stitched into a native 
projection format, e.g., the equirectangular projection (ERP) 
format. The native projection format can be converted into 
another projection format, e.g., the cubemap (CMP), and frame 
packed before being fed into existing video codecs, such as 
H.264, HEVC, VP9, etc. At the client side, the decompressed 
video is converted into the projection format supported by the 
display, followed by the graphical rendering via viewport 
generation based on user’s viewing direction before finally being 
projected onto the display devices (e.g., head mounted display, 
smartphone, desktop, etc.). 

In this framework, the selection of an intermediate 360-
degree video projection format is important and would 
potentially improve the coding performance. In the previous 
JVET meetings, many projection formats have been proposed in 
addition to ERP and CMP, and several are being investigated, 
such as icosahedral projection (ISP) [4], segmented sphere 
projection (SSP) [5], octahedron projection (OHP) [6], etc. 

Among all those projection formats, CMP is widely used in 
the computer graphics community. Due to the intrinsic 
rectilinear structure of CMP, the resulting motion field (which 
describes the temporal correspondence between neighboring 2D 
projected pictures) can be efficiently represented by the 
translational motion model used in modern video codecs (e.g., 
H.264, HEVC, etc.).  
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Figure 1. Workflow of 360-degree video system. 
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However, due to the limitation of the rectilinear projection, 
the samples on the sphere are unevenly sampled in the CMP 
format, with a higher sampling density near the face boundaries 
and a lower sampling density near the face centers. Such non-
uniform spherical sampling could penalize the coding efficiency 
of the resulting 360-degree video. To achieve a better sampling 
efficiency for any input spherical video, it is desirable to have a 
projection format that allows flexible sampling function 
selection to accommodate different video content characteristics. 
Therefore, in this work, a hybrid cubemap projection (HCP) 
format is proposed to generalize CMP and other CMP-like 
projections, and allow adaptive selections of optimal transform 
functions for each direction over each cube face based on the 
specific content characteristics in that face.  

The remainder of the paper is structured as follows. 
Section II presents related work. Section III introduces the HCP 
algorithm design, parameter derivation process, and parameter 
signaling. In Section IV, a progressive HCP parameter search 
algorithm is proposed to reduce the temporal variation of HCP 
parameters and the computational complexity. In Section V, 
experimental results are provided. Section VI concludes this 
paper with future work summarized. 

II. RELATED WORK 

Due to its simplicity and computational efficiency, CMP is 
widely supported by graphics hardware and video editing and 
processing software. As illustrated in Figure 2 (a), the CMP 
consists of six square faces labeled using numbers 0-5, where X, 
Y, and Z refers to the axes. Suppose the radius of the tangent 
sphere is 1, then the lateral length of each face is 2. Before being 
fed into a conventional video codec, the six CMP faces are 
frame-packed together into a single rectangular picture. 
Additionally, to maximize the continuity between neighboring 
faces, some faces may be rotated by a certain degree. 
Figure 2 (b) shows one frame packing scheme that places the six 
faces into a rectangular picture using 3×2 layout. Figure 2 (c) 
provides an exemplary picture. 

To address the non-uniform sampling problem of CMP, some 
CMP-like projections have been proposed, such as adjusted 
cubemap projection (ACP) [7]. ACP improves the spherical 
sampling uniformity by adjusting the coordinates in the cube 
faces using transform functions whose coefficients are tailored 
to approximate uniform sphere sampling. For example, in ACP, 
a pair of transform and inverse transform functions are used, as 
shown in Eq. (1) and (2), respectively, where 𝑥 and 𝑥′ are the 
original coordinate defined in CMP domain and the adjusted 
coordinate defined in ACP domain, respectively, and 𝑠𝑔𝑛(∙) is 
the function that returns the sign of the input value. The 
approximately uniform sampling grid on the sphere covering 
one CMP face is shown in Figure 3 (a). The corresponding 
sampling grid in CMP domain projected from approximately 
uniform sampling grid on the sphere with 3D to 2D projection is 
shown in Figure 3 (b). The ACP sampling grid is shown in 
Figure 3 (c). As can be seen, ACP greatly improves sampling 
uniformity compared to CMP. 

𝑥′ = 𝑓(𝑥) = 𝑠𝑔𝑛(𝑥) ∙ (−0.36 ∙ 𝑥2 + 1.36 ∙ |𝑥|) (1) 

𝑥 = 𝑔(𝑥′) = 𝑠𝑔𝑛(𝑥′) ∙
0.34 − √0.342 − 0.09 ∙ |𝑥′|

0.18
 

(2) 

Although ACP can improve the sampling uniformity, it can 
be still further improved: 

Firstly, as shown in Eq. (1) and (2), the sampling adjustment 
functions of ACP are fixed for the horizontal and vertical 
directions, regardless of the content inside each cube face. As 
shown in Figure 4, the most “attractive” content having complex 
texture over face 5 (as enclosed by the red square) is located at 
the bottom boundary of the face whereas the remaining part of 
the face is composed of regions with relatively simple texture. 
In such a case, it is preferable to design one transform function 
that assigns a higher spherical sampling density near the face 
boundaries and a lower spherical sampling density near the face 
center. On the contrary, in face 3, the most “attractive” content 
(as enclosed by the yellow circle) is located in the center of the 
face. Therefore, the coding performance can be improved by 
applying a transform function that assigns a lower spherical 
sampling density at the face boundaries and a higher spherical 
sampling density at the face center. 
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Figure 2. CMP example. (a) 3D geometry structure; (b) the 2D 
layout for six faces; (c) packed CMP frame. 
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Figure 3. Illustration of samping grids in different domains.  
(a) Uniform sampling grid on the sphere; (b) CMP sampling 
grid projected from approximately uniform sampling grid;  
(c) ACP sampling grid after applying transform functions. 
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Figure 4. Packed CMP sample frame from 360-degree video 
sequence “ChairliftRide”. 
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Secondly, the derivations of transform functions from Eq. (1) 
and (2) assume that each ACP face has a symmetric sampling 
pattern between the horizontal and vertical directions, just as 
CMP does. Such symmetry property may not always be optimal 
for each ACP face. As shown in Figure 4, the content in face 1 
presents stable characteristics in the horizontal direction 
corresponding to either the sky region or the ground region. 
However, when moving along the vertical direction, the top 
portion corresponds to the sky region with relatively simple 
texture and the bottom portion corresponds to the ground region 
with fine texture and edges. This indicates that the content 
characteristics change along the vertical direction. In this case, 
uniform sampling in face 1 may not be optimal. Instead, a non-
uniform spherical sampling density in the vertical direction (i.e., 
gradually increasing the sampling density from the top to the 
bottom of the face) with a relatively uniform sampling density 
in the horizontal direction would likely perform better. 

III. HYBRID CUBEMAP PROJECTION 

As introduced in Section II, ACP can improve the 360-
degree video coding efficiency compared with the conventional 
CMP projection. However, the sampling distribution and 
transform functions of ACP are fixed. In this work, the HCP 
format is proposed to generalize CMP and CMP-like projections, 
and to better adapt to diverse content over each cube face. 
Similar to ACP, HCP is also related to CMP with a pair of 
transform and inverse transform functions. Assuming (𝑥, 𝑦) is 
defined in a CMP face with side length of 2, and (𝑥′, 𝑦′) is the 
corresponding point in an HCP face, the transform functions 
from CMP to HCP are defined in Eq. (3) and (4), where 𝑎 and 𝑏 
are the HCP horizontal and vertical transform function 
parameters, respectively. 

𝑥′ = 𝑓𝑋(𝑥) = 𝑠𝑔𝑛(𝑥) ∙ (𝑎 ∙ 𝑥2 + (1 − 𝑎) ∙ |𝑥|) (3) 

𝑦′ = 𝑓𝑌(𝑦) = 𝑠𝑔𝑛(𝑦) ∙ (𝑏 ∙ 𝑦2 + (1 − 𝑏) ∙ |𝑦|) (4) 

Correspondingly, the inverse transform functions from HCP 
to CMP are defined in Eq. (5) and (6). If the parameter 𝑎 or 𝑏 is 
equal to zero, the sampling distribution in that corresponding 
direction becomes the same as CMP. 

𝑥 = 𝑔𝑋(𝑥′) = 𝑠𝑔𝑛(𝑥′) ∙
−(1 − 𝑎) + √(1 − 𝑎)2 + 4𝑎 ∙ |𝑥′|

2𝑎
 (5) 

𝑦 = 𝑔𝑌(𝑦′) = 𝑠𝑔𝑛(𝑦′) ∙
−(1 − 𝑏) + √(1 − 𝑏)2 + 4𝑏 ∙ |𝑦′|

2𝑏
 (6) 

As shown in Figure 4, the three faces within a cube face row 

(either top or bottom) are geometric neighbors in the 3D space. 

To maintain such face boundary continuity in between two 

neighbouring faces, the following constraints are applied over 

HCP parameters, as defined in Eq. (7) and (8), where b4, b0, 

and b5  denote the vertical parameters of face 4, 0, and 5, 

respectively, and b2, b1, and b3 denote the vertical parameters 

of face 2, 1, and 3, respectively. Namely, faces F4, F0, and F5, 

which belong to the first row, will share the same vertical 

transform function, and faces F2, F1, and F3, which belong to the 

second row, will share the same vertical transform function. 

b4 = b0 = b5 (7) 

b2 = b1 = b3 (8) 

HCP parameters are selected to minimize the end-to-end 

weighted conversion-only error, as D calculated in Eq. (9), 

where the weight 𝑊(𝑖, 𝑚, 𝑛) is the same as those defined in 

weighted to spherically uniform PSNR (WS-PSNR) for ERP 

format in 360Lib [2][8]. Here 𝐹𝑖  denotes the portion of the 

source ERP corresponding to face F𝑖 in the HCP, and 𝐹𝑖
′ 

denotes the portion of the reconstructed ERP corresponding to 

face F𝑖 in the HCP. 

    𝐷 = ∑ ∑ 𝑊(𝑖, 𝑚, 𝑛)(𝑚,𝑛)∈𝐹𝑖
(𝐹𝑖[𝑚, 𝑛] − 𝐹𝑖[𝑚, 𝑛])2

𝐹𝑖∈𝑓𝑎𝑐𝑒𝑟𝑜𝑤
 (9) 

Considering the constraints in Eq. (7) and (8), the HCP 

parameter derivation process for the 3×2 frame packing scheme 

as shown in Figure 2 (b) is separated into two sub-processes: 

(a) deriving parameters for the first face row consisting of F4, 

F0, and F5; and (b) deriving parameters for the second face row 

consisting of F2, F1, and F3. For each face row, the following 

iterative parameters searching algorithm is applied over 

horizontal and vertical directions:  

Step 1: Search parameters for the horizontal direction while 

fixing the parameters for the vertical direction, and update the 

parameters for the horizontal direction with the optimal 

parameters found in searching; if there is no update, searching 

process stops; otherwise, go to Step 2; 

Step 2: Search parameters for the vertical direction while 

fixing parameters for the horizontal direction, and update the 

parameters for the vertical direction with the optimal 

parameters found in searching; if there is no update, searching 

process stops; otherwise, go to Step 1. 

Usually, the proposed HCP parameter search algorithm 

converges within three to four iterations. The final parameters 

will be signalled at picture level. The parameters are estimated 

and updated periodically using the first picture of each intra 

random-access point (IRAP) and signalled once per IRAP. To 

support the proposed HCP design, the high-level syntax is 

modified. Both sequence parameter set (SPS) and picture 

parameter set (PPS) are extended and signalled at the beginning 

of each IRAP, as follows. 

SPS: projection format, frame packing parameters, e.g., 

number of faces in horizontal and vertical directions in the 

frame packed picture, and each face’s position and orientation 

in the frame packed picture. 

PPS: the horizontal and vertical HCP parameters. 

IV. HCP PROGRESSIVE PARAMETER SEARCH 

As discussed in Section III, HCP parameter search process is 

computationally-expensive due to the large number of search 

parameter candidates (e.g., up to 64 under 6-bit precision) and 

iterations. Therefore, to reduce the complexity over the target I-

frame of each IRAP, a progressive HCP parameter search 

algorithm is proposed to accelerate the search process, while 

simultaneously preserving the encoding and conversion 

efficiency. There are two major aspects to reduce the 

complexity: (a) reducing the search candidates with a fast 

search at the IRAP pictures of the video sequence; (b) refining 

the parameter within a limited window for the subsequent IRAP 

pictures when HCP parameters are periodically updated. 
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Figure 5. Illustration of progressive HCP parameter search. 

 

 

Step 1: coarse step-size parameter search (C1
n: n-th candidate 

in Step 1; C1
k: optimal candidate in Step 1) 

 

Step 2: local parameter search refinement (C1
k: optimal 

candidate in Step 1; C2
i: i-th refinement candidates with 

reduced step-size; C2
0: refined optimal candidate) 

 

Step k: recursive local search refinement until step-size 

reduces to 1 (purple box: final optimal candidate via CFS) 

Figure 6. Illustration of coarse-to-fine search. The step-size in 

Step 1, Step 2, and Step 3 is set to 4, 2, and 1, respectively. 
 

As shown in Figure 5, the first frame of the 360-degree video 

is defined and hereafter referred to as the “heading-fame” (𝑓𝐻). 

Denote the HCP parameters derived for 𝑓𝐻  as 𝑃𝑖
ℎ , where “h” 

stands for heading-frame and i is the face index, ranging from 0 

to 5. Once 𝑃𝑖
ℎ is determined during encoding or conversion, the 

HCP parameters over the following IRAPs are only searched 

within a small neighborhood, i.e., [-𝜎, +𝜎], with respect to 𝑃𝑖
ℎ, 

where 𝜎 defines the progressive search range (PSR) and can be 

determined either empirically or based on the video 

characteristics, e.g., through pre-processing.  

In our implementation, the parameter precision is 6 bits. 

Therefore, the integer parameter search range is within [-63, 0], 

corresponding to HCP parameter range within (-1, 0]. Note that 

CMP and ACP cases are covered within our search range setting. 

Our PSR is set to 4. The HCP search range for the subsequent 

IRAPs is much smaller compared to the search range of the first 

IRAP, and therefore significantly reduces the computational 

complexity. 

To further improve the search efficiency, the parameter 

search over all IRAP frames can be further optimized, using fast 

algorithms such as coarse-to-fine search (CFS). CFS achieves a 

significant speedup, as illustrated in Figure 6. CFS algorithm 

firstly searches over the entire parameter space with a uniform 

coarse search step-size. When the initial optimal parameter is 

pinpointed, a local refinement is triggered in a smaller 

neighborhood of the previously-chosen optimal parameter and 

the search step-size is reduced by half. The local search 

refinement only searches over two neighbors next to the optimal 

parameter in the previous step. Such refinement process 

continues until a convergence criterion is met (e.g., the step-size 

reduces to 1).  

In practice, the 360-degree video encoder or converter can 

trade off the complexity and quality performance by different 

configurations of search range and search step-size. For 

example, the HCP parameter progressive search range can be 

adaptively configured according to the distance between the 

current picture and the heading-frame.  

V. PERFORMANCE EVALUATION 

In this section, detailed experimental results are provided to 

demonstrate the coding performance and HCP parameter 

estimation complexity. The proposed HCP format and HCP 

parameter estimation algorithms are implemented upon JEM-

6.0 [9] and 360Lib-3.0 [8]. The simulation results are reported 

using the test conditions specified in the call for evidence (CfE) 

document [10]. The size of each HCP face is set to 1184×1184 

luma samples, which is the same face size used for ACP in the 

360-degree video common test conditions (CTC) [1]. Table 1 

lists those test sequences and the original format is ERP. 

Random access configuration is used for the encoding and HCP 

parameters are updated per IRAP in the simulations. The 3×2 

frame packing is used for ACP and HCP as shown in Figure 4, 

and the coded picture resolution is 3552×2368. The end-to-end 

WS-PSNR (E2E WS-PSNR) [2] is applied in the objective 

quality comparison, where the decoded video is firstly 

converted back to the ERP format of the resolution as original 

source, then WS-PSNR is calculated in ERP format between the 

reference and the test.  

The conversion-only performance without compression is 

provided in Table 2. The original ERP video is firstly converted 

to a projection format in a 25% downsized ratio, then the 

downsized video is converted back to original resolution ERP 

and the E2E WS-PSNR is calculated. For ERP format, the 

resolution of converted video is 4096×2048. The proposed HCP 

format outperforms ERP by 3.01dB E2E WS-PSNR 

improvement for luma and outperforms ACP by 0.16dB E2E 

WS-PSNR improvement for luma. This validates spherical 

sampling efficiency of the proposed HCP over both ERP and 

ACP.  
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Table 1. Test Sequences.  

Sequence 

ERP 

resolution 

Frame 

count 

Frame  

rate 

Bit 

depth 

SkateboardInLot 8192×4096 300 30 10 

ChairliftRide 8192×4096 300 30 10 

KiteFlite 8192×4096 300 30 8 

Harbor 8192×4096 300 30 8 

Trolley 8192×4096 300 30 8 
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The BD rate [11] performance of HCP with progressive 

parameter search compared with ERP and ACP coding is 

provided in Table 3. From Table 3, the proposed HCP format 

demonstrates on average luma BD rate reduction of 11.51% 

compared to ERP format in terms of end-to-end WS-PSNR. The 

HCP format also achieves a luma BD rate reduction of 0.54% 

compared with the ACP format. Compared to CMP, the HCP 

achieves a luma BD rate reduction of 8.0%. 

Additionally, the coding performance and parameter 

estimation complexity are evaluated between the progressive 

parameter search and exhaustive parameter search algorithms 

for HCP. The exhaustive parameter search method iteratively 

searches for the optimal parameter with a fixed search step-size 

of 1 (as discussed in Section III), and temporal continuity 

constraint for HCP parameters is not applied. Table 4 compares  

 

 

 

the coding performance of HCP using progressive parameter 

search with that using exhaustive search. On average, 

progressive search achieves 0.13% BD rate reduction and the 

gain is larger over fast-motion 360-degree video sequences such 

as “SkateboardInLot” and “ChairliftRide”. 

The parameter estimation complexity is evaluated with 

conversion-only test. Table 5 lists the quality and conversion 

time for ACP, HCP with exhaustive search, and HCP with 

progressive search. ACP is used as an anchor because there is 

no parameter estimation needed. HCP with progressive search 

is 5.5x faster than exhaustive search with practically the same 

conversion quality (i.e., only 0.01dB loss). Note that although 

HCP with progressive search is 2.5x slower than ACP during 

the parameter estimation stage, HCP parameter search 

introduces negligible complexity overhead compared to the 

overall encoding complexity and is only executed once per 

IRAP. 

VI. CONCLUSION 

In this work, a novel hybrid cubemap projection (HCP) 

solution is proposed to compress 360-degree video more 

efficiently. By flexibly selecting the transform functions for 

each cube face, more efficient sampling is achieved according 

to the 360-degree video content characteristics and coding 

performance is therefore improved. Future extension of this 

work may include HCP parameter estimation considering the 

distortion introduced during the coding process.  
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Table 2. HCP conversion-only performance against ERP/ACP. 

Sequence 

E2E WS-PSNR 

improvement 

over ERP (dB) 

E2E WS-PSNR 

improvement 

over ACP (dB) 

Y U V Y U V 

SkateboardInLot 3.64 1.45 1.18 0.40 0.06 0.10 

ChairliftRide 2.67 0.96 0.91 0.06 0.02 0.10 

KiteFlite 2.81 0.75 0.78 0.03 -0.01 0.10 

Harbor 3.11 0.76 0.78 0.23 0.02 0.10 

Trolley 2.82 0.64 0.68 0.10 -0.01 0.10 

Average  3.01 0.91 0.87 0.16 0.01 0.10 

Table 3. HCP coding performance compared with ERP/ACP. 

Sequence 

BD rate saving  

relative to ERP 
BD rate saving  

relative to ACP 
Y U V Y U V 

SkateboardInLot -15.25% -22.94% -21.45% -0.90% -0.90% 0.70% 

ChairliftRide -23.00% -21.87% -21.10% -1.0% -4.10% -3.40% 

KiteFlite -6.05% -8.80% -12.76% 0.0% 0.10% 0.70% 

Harbor -7.21% -12.31% -12.80% -0.3% -0.50% -1.90% 

Trolley -6.07% -7.37% -13.99% -0.5% -1.40% -2.20% 

Average  -11.51% -14.66% -16.42% -0.54% -1.37% -1.22% 

Table 4. HCP with progressive parameter search compared to HCP 

with exhaustive search and no temporal constraint. 

Sequence 

BD rate saving 

Y U V 
SkateboardInLot -0.4% -0.2% 0.2% 

ChairliftRide -0.1% -0.2% -0.3% 

KiteFlite 0.0% -0.3% 0.2% 

Harbor 0.0% 0.1% -0.2% 

Trolley -0.2% -6.1% -9.9% 

Average -0.13% -1.35% -2.01% 

Table 5. HCP parameter estimation complexity comparison. 

Sequence 

ACP 

HCP exhaustive 

search 

HCP progressive 

search (PSR=4) 

Y (dB) Time (s) Y (dB) Time (s) Y (dB) Time (s) 

SkateboardInLot 49.74 1890 50.14 24908 50.13 4208 

ChairliftRide 50.00 1747 50.06 25197 50.03 4425 

KiteFlite 46.41 1862 46.44 23254 46.44 4005 

Harbor 48.99 1884 49.22 26491 49.22 5147 

Trolley 45.29 1864 45.39 24780 45.39 4992 

Average 48.09 1850 48.25 24926 48.24 4555 
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